STD: XII

Marks: 90

QUARTERLY EXAMINATION - 2024

MODEL PAPER - I

Ma	ths						Time: 3 Hrs
				PART - I			$(20\times1=20)$
No	te: (i) A	All Questions a	are compulsory				
			st suitable answe orresponding ans		given four alt	ernati	ves and write the option
1.	If adj (ad	$j(A) = A ^9$, th	nen the order of	the square	matrix A is		
	(a) 3	(b)	4	(c) 2		(d)	5
2.	If $A = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ then $9I -$	A =				
	(a) $2A^{-1}$	(b)	$3A^{-1}$	(c) A^{-1}		(d)	$\frac{A^{-1}}{2}$
3.	If $A^T \cdot A^-$	¹ is symmetric	then $A^2 =$				
	(a) A^{-1}	(b)	$(A^T)^2$	(c) A^T		(d)	$(A^{-1})^2$
4.		on of equations $\frac{1}{a-b} + \frac{1}{1-c} =$	ax + y + z = 0, x	+by+z=0,	x + y + cz = 0	has	a non-trivial solution then
	(a) 1	(b)	- 1	(c) 0		(d)	2
5.	(i) z is re (ii) z is properties (iii) $\overline{(z^n)}$:	eal if and only	ry if and only it		nplex conjuga	ntes	
	(a) (i) (ii) (iii) (b)	(i) (ii) (iv)	(c) (i) (ii)		(d)	All of these
6.	The soluti	on of the equa	ation $ z - z = 1$	+2i is			
	_		$\frac{-3}{2} + 2i$	_			2
7.	If ω≠1 is	s a cube root of	of unit and $\begin{vmatrix} 1\\1\\1 \end{vmatrix}$	$ \begin{array}{ccc} 1 \\ -\omega^2 - 1 & \omega^2 \\ \omega^2 & \omega \end{array} $	$\begin{vmatrix} 1 \\ \omega^2 \\ 0 \end{vmatrix} = 3k \text{ then}$	k is	equal to
	(a) 1	(b)	- 1	(c) $\sqrt{3} i$		(d)	$-\sqrt{3}i$

8.	The polynomial $x^3 - kx^2 + 9x$ has three real roots if and only if, k satisfies							
	(a) $ k \le 6$	(b) $k = 0$	(c) $ k > 6$	(d)	$ k \ge 6$			
9.	The polynomial $9x$	$9 + 2x^5 - x^4 - 7x^2 + 2$	has maximum number of	real,	imaginary roots are			
	(a) 6, 3	(b) 3, 6	(c) 5, 4	(d)	4, 5			
10.	Which of the follo	wing one is not a po	eriodic function with period	od 2π	radians			
	(a) $\sin x$	(b) $\cos x$	(c) $\tan x$	(d)	cosec x			
11.	$If \sin^{-1} x + \sin^{-1} y$	$y = \frac{2\pi}{3}$ then $\cos^{-1} x +$	$-\cos^{-1} y$ is equal to					
	(a) $\frac{2\pi}{3}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d)	π			
12.	The domain of the	function defined by	$f(x) = \sin^{-1} \sqrt{x - 1} \text{ is}$					
	(a) [1, 2]	(b) [-1, 1]	(c) [0, 1]	(d)	[-1, 0]			
13.	$\sin(\tan^{-1}x), x <$	1 is equal to						
	(a) $\frac{x}{\sqrt{1-x^2}}$	$(b) \frac{1}{\sqrt{1-x^2}}$	$(c) \frac{1}{\sqrt{1+x^2}}$	(d)	$\frac{x}{\sqrt{1+x^2}}$			
14.	The radius of the	circle $3x^2 + by^2 + 4bx$	$x - 6by + b^2 = 0 \text{ is}$					
	(a) 1	(b) 3	(c) $\sqrt{10}$	(d)	$\sqrt{11}$			
15.	If $x + y = k$ is a no	rmal to the parabola	$y^2 = 12x$ then the value of	of k is	S			
	(a) 3	(b) -1	(c) 1	(d)				
16.	Area of the greates	st rectangle inscribed	I in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	is				
	(a) 2ab	(b) <i>ab</i>	(c) \sqrt{ab}	(d)	$\frac{a}{b}$			
17.	If \overrightarrow{a} and \overrightarrow{b} are para	allel vectors, then [$\overrightarrow{a} \overrightarrow{c} \overrightarrow{b}$] is equal to					
	(a) 2	(b) -1	(c) 1	(d)	0			
18.	If $[\overrightarrow{a} \times \overrightarrow{b} \xrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \xrightarrow{c}]$	$(\times \overrightarrow{a}) = 64$ then $[\overrightarrow{a}]$	$\overrightarrow{b} \overrightarrow{c}$ is					
	(a) 32	(b) 128	(c) 0	(d)	8			
19.	If the angle between	en the line $x = \frac{y-1}{2}$	$\frac{z-3}{k}$ and the plane $x+3$	+ 2y +	$3z = 4 \text{ is } \cos^{-1}\left(\sqrt{\frac{5}{14}}\right)$			
	then k is equal to							
	(a) $\frac{3}{2}$	(b) $\frac{2}{5}$	(c) $\frac{5}{3}$	(d)	$\frac{2}{3}$			
20.	If the directions of	a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$	then					
	(a) $c = \pm 3$	(b) $c = \pm \sqrt{3}$	(c) $c > 0$	(d)	0 < <i>c</i> < 1			

 $(7 \times 2 = 14)$

Note: (i) Answer any 7 Questions

(ii) Q.No: 30 is compulsory

21. If
$$\operatorname{adj} A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 find A^{-1}

- 22. If $z = r(\cos \theta + i \sin \theta)$ then prove that $z^{-1} = \frac{1}{r}(\cos \theta i \sin \theta)$ 23. If $z_1 = 3 2i$ and $z_2 = 6 + 4i$ find $\frac{z_1}{z_2}$
- 24. Solve the equation $x^4 14x^2 + 45 = 0$
- 25. Is $\cos^{-}(-x) = \pi \cos^{-1}(x)$ true? Justify your answer.
- 26. Find the value of $\sec^{-1}\left(\frac{-2\sqrt{3}}{3}\right)$
- Obtain the equation of the circle for which (3, 4) and (2, -7) are the ends of a diameter.
- The volume of the parallelopiped whose co-terminous edges are $7\vec{i} + a\vec{j} 3\vec{k}$, $\vec{i} + 2\vec{j} \vec{k}$, $-3\overrightarrow{k}+7\overrightarrow{j}+5\overrightarrow{k}$ is 90 cubic units. Find the value of 'a'.
- 29. For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} prove that $[\overrightarrow{a} + \overrightarrow{b} \rightarrow \overrightarrow{b} + \overrightarrow{c} \rightarrow \overrightarrow{c} + \overrightarrow{a}] = 2 [\overrightarrow{a} \rightarrow \overrightarrow{b} \rightarrow \overrightarrow{c}]$
- 30. For what value of \overrightarrow{k} , $(k+9) x^2 + (k+1) x + 1 = 0$ has no real roots.

PART - III
$$(7 \times 3 = 21)$$

Note: (i) Answer any 7 Questions

(ii) Q.No: 40 is compulsory

- 31. Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$ by reducing it to an echelon form.
- 32. Solve by Cramer's rule 5x 2y + 16 = 0; x + 3y 7 = 0
- 33. Write in polar form $2 + i 2\sqrt{3}$
- 34. Find the square root of $-11 60\sqrt{-1}$
- 35. Prove that $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1 x^2}}, -1 < x < 1$
- 36. Determine whether x+y-1=0 is the equation of a diameter of circle $x^{2} + y^{2} - 6x + 4y + c = 0$ for all values of c.
- 37. Find the equation of the hyperbola. Given centre (2, 1) one of the foci (8, 1) and corresponding directrix x = 4
- 38. Prove by vector method than an angle in a semi-circle is a right angle.
- Show that the lines $\overrightarrow{r} = (6\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}) + s(\overrightarrow{i} + 2\overrightarrow{j} 3\overrightarrow{k})$ and $\overrightarrow{r} = (3\overrightarrow{i} + 2\overrightarrow{j} 2\overrightarrow{k}) + t(2\overrightarrow{i} + 4\overrightarrow{j} 5\overrightarrow{k})$ are skew lines and hence find the shortest distance between them.
- 40. Solve: $\tan^{-1} \frac{x}{2} + \tan^{-1} \frac{x}{3} = \frac{\pi}{4}$

PART - IV
$$(7 \times 5 = 35)$$

Note: Answer all Questions

- 41. (a) If the system of equations px + by + cz = 0; ax + qy + cz = 0; ax + by + rz = 0 has a non-trivial solution and $p \ne a$, $q \ne b$, $r \ne c$ prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$
 - (b) A bridge has a parabolic such that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6m from the centre on either sides.
- 42. (a) If z = x + iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$ then show that $x^2 + y^2 = 1$
 - (b) Solve the equation (2x-3)(6x-1)(3x-2)(x-2)-5=0
- 43. (a) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135 = 0$ if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.

(or)

- (b) By vector method, prove that $\cos (\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.
- 44. (a) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1 show that $x^2 + y^2 + z^2 + 2xyz = 1$ (or)
 - (b) Identify the type of conic and find centre, foci, vertices and directrices of $9x^2 y^2 36x 6y + 18 = 0$
- 45. (a) If $ax^2 + bx + c$ is divided by x + 3, x 5 and x 1 the remainders are 21, 61 and 9 respectively. Find a, b, c (use Gaussian elimination method) (or)
 - (b) Find the non-parametric and Cartesian equation of the plane passing through the point (2,
 - 3, 6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$
- 46. (a) Find all cube roots of $\sqrt{3} + i$

(or)

- (b) Find the number of solution of the equation $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}(3x)$
- 47. If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ find A^{-1} and hence solve the system of linear equations 2x 3y + 52 = 11, 3x + 2y 4z = -5; x + y 2z = -3 (or)
 - (b) Derive the equation of the plane in intercept form.

8. A zero of $x^3 - 64$ is

(a) 0

(b) 4 (c) 4*i*

QUARTERLY EXAMINATION - 2024

MODEL PAPER - II

			141	ODEL TATEK -	11	
STI Mat): XII ths					Marks: 90 Time: 3 Hrs
				PART - I		$(20\times1=20)$
Not	te: (i)	All Ques	tions are compulso	ry		
	(ii)		he most suitable ar the corresponding	_	en four alternati	ves and write the option
1.	If A is	a square n	natrix of order n , t	then which of the	following one is	not true.
	(a) If .	A has an i	nverse, then it is t	inique.		
	(b) A	¹ exists if	and only if A is a	non-singular		
	(c) If .	A is a sing	gular matrix then A	⁻¹ is zero		
	(d) A	is non-sing	ular then $A^{-1} = \frac{1}{ A }$	$\frac{1}{1}$ adj A		
2.	If $P = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	is the adjoining	of 3×3 matrix A	and $ A = 4$, the	en x is
	(a) 15		(b) 12	(c) 14	(d)	11
3.	If $\rho(A)$	$= \rho (A \mid B)$	then the system A	X = B of linear eq	uations is	
	(a) con	nsistent and	l has a unique solu	ıtion	(b)	consistent
	(c) con	nsistent has	infinitely many se	olution	(d)	inconsistent
4.	$i^n + i^{n+1}$	$^{1} + i^{n+2} +$	i^{n+3} is			
	(a) a		(b) 1	(c) -1	(d)	i
5.	The pri	ncipal argu	ment of $(\sin 40^{\circ} +$	$i\cos 40^{\circ})^5$ is		
	(a) -1	.10°	(b) -70°	(c) 70°	(d)	110°
6.	The val	ue of $\left[\frac{-1}{2}\right]$	$\left[\frac{1+i\sqrt{3}}{2}\right]^{100} + \left[\frac{-1}{2}\right]^{100}$	$\frac{-i\sqrt{3}}{2} \right]^{100} $ is		
	(a) 2		(b) 0	(c) -1	(d)	1
7.	If $2i-7$	$\sqrt{3}$ is one 1	root of a polynomi	al equation, then a	another root is	
	(a) 2i	$+\sqrt{3}$	(b) $-2i + \sqrt{3}$	(c) $-\sqrt{3}-2i$	<i>i</i> (d)	$\sqrt{3}$

(d) -4

9.	The	number of pos	sitive	roots of the pol	ynon	$ \min_{j=0}^{n} \sum_{r=0}^{n} {^{n}C_{r}(-1)^{r}} $	x^r is		
	(a)	0	(b)	n	(c)	< n	(d)	r	
10.	The	value of sin ⁻¹	(cos	x), $0 \le x \le \pi$ is					
	(a)	$\pi - x$	(b)	$x-\frac{\pi}{2}$	(c)	$\frac{\pi}{2}-x$	(d)	$\pi + x$	
11.	If th	he function $f(x)$	= siı	$n^{-1}(x^2-3)$ then	x be	elongs to			
	(a)	[-1, 1]	(b)	$[\sqrt{2},2)$	(c)	$[-2, -\sqrt{2}] \cup [\sqrt{2}, 2]$] (d)	$[2,-2] \cup [\sqrt{2},-\sqrt{2}]$	
12.	The	The principal value of $\sin^{-1}(2)$ is							
	(a)	$\frac{\pi}{4}$	(b)	$\frac{-\pi}{4}$	(c)	2	(d)	does not exists	
13.	The	circle with len	gth o	of major axis as	diam	neter is called			
	(a)	Auxiliary circl	e (b)	Incirle	(c)	Real circle	(d)	Imaginary circle	
14.						pola from an externa			
	(a)		(b)		(c)			many	
15.		e equation of the $-4y = 3$ is	e no	rmal to the circl	e^{x^2}	$+y^2 - 2x - 2y + 1 = 0$) whi	ch is parallel to the line	
	(a)	x + 2y = 3	(b)	x + 2y + 3 = 0	(c)	2x + 4y + 3 = 0	(d)	x - 2y + 3 = 0	
16.	The	eccentricity of	the	ellipse $(x-3)^2$ +	(y	$(4)^2 = \frac{y^2}{9}$ is			
	(a)	$\frac{\sqrt{3}}{2}$	(b)	$\frac{1}{3}$	(c)	$\frac{1}{3\sqrt{2}}$	(d)	$\frac{1}{\sqrt{3}}$	
17.	If \bar{a}	$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a}$	$\overrightarrow{a} = 0$	then the value of	of $[\bar{a}]$	$\overrightarrow{b} \overrightarrow{c}$ is			
				$\frac{1}{3} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} $			(d)	-1	
18.	Con	nsider the vector	ors \overline{a}	\overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} such the	hat ($\overrightarrow{a} \times \overrightarrow{b} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{0}$. 1	Let F	P_1 and P_2 be the planes	
	dete P_2 i		pairs	of vectors $\overrightarrow{a}, \overrightarrow{b}$	and	$\overrightarrow{c}, \overrightarrow{d}$ respectively. The	ien tl	he angle between P_1 and	
	(a)	0°	(b)	45°	(c)	60°	(d)	90°	
19.	The	distance between	en th	ne planes $x + 2y$	+ 3 <i>z</i> +	-7 = 0 and $2x + 4y +$	6z +	7 = 0 is	
	(a)	$\frac{\sqrt{7}}{2\sqrt{2}}$	(b)	$\frac{7}{2}$	(c)	$\frac{\sqrt{7}}{2}$	(d)	$\frac{7}{2\sqrt{2}}$	
20.	If 2	$2\overrightarrow{i-j} + 3\overrightarrow{k}, 3\overrightarrow{i+1}$	$2\overrightarrow{j} + \overrightarrow{j}$	\overrightarrow{k} and $\overrightarrow{i} + m \overrightarrow{j} + 4$	\overrightarrow{k} are	e coplanar, then value	e of	m is	
	(a)			-2	(c)			-3	

$$PART - II \qquad (7 \times 2 = 14)$$

Note: (i) Answer any 7 Questions

(ii) Q.No: 30 is compulsory

21. If
$$A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix} B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$$
 find $(AB)^{-1}$.

- 22. Obtain the Cartesian form of the locus of z = x + iy given Im[(1 i)z + 1] = 0
- 23. Find the monic polynomial equation of minimum degree with real coefficients having $2 \sqrt{3}i$ as a root.
- 24. Find the value of $\cos^{-1} \left[\cos \frac{\pi}{7} \cos \frac{\pi}{17} \sin \frac{\pi}{7} \sin \frac{\pi}{17} \right]$
- 25. For what value of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x 1) < \pi$ holds?
- 26. Find the centre and radius of the circle $x^2 + y^2 + 6x 4y + 4 = 0$
- 27. Find the equation of the tangent to the parabola $y^2 = 16x$ perpendicular to 2x + 2y + 3 = 0
- 28. With usual notation, in any triangle ABC prove by vector method $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- 29. Find the angle between the straight line $\overrightarrow{r} = (2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}) + t(\overrightarrow{i} \overrightarrow{j} + \overrightarrow{k})$ and plane 2x y + z = 5
- 30. Express $\frac{(1+i)(1-2i)}{1+3i}$ in rectangular form.

PART - III
$$(7 \times 3 = 21)$$

Note: (i) Answer any 7 Questions

(ii) Q.No: 40 is compulsory

- 31. Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal hence find A^{-1}
- 32. Solve x + 2y + 3z = 0; 3x + 4y + 4z = 0; 7x + 10y + 12z
- 33. The complex numbers u, v and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$. If v = 3 4i and w = 4 + 3i find u in rectangular form.
- 34. If |z| = 2 show that $3 \le |z + 3 + 4i| \le 7$.
- 35. Solve the equations. $12x^3 + 8x = 29x^2 4$
- 36. Find the value of $\sin^{-1}(-1) + \cos^{-1}(1/2) + \cot^{-1}(2)$
- 37. Find the equation of the tangent and normal to the circle $x^2 + y^2 6x + 6y 8 = 0$ at (2, 2).
- 38. Can you draw a plane through the given two lines?

 Justify your answer $\overrightarrow{r} = (\overrightarrow{i} + 2 \overrightarrow{j} 4 \overrightarrow{k}) + t (2\overrightarrow{i} + 3\overrightarrow{j} + 6\overrightarrow{k})$ and $\frac{x-3}{-2} = \frac{y-3}{3} = \frac{z+5}{8}$
- 39. Find the points where the straight line passes through (6, 7, 4) and (8, 4, 9) cuts the xz and yz planes.
- 40. A satellite is travelling around the earth is an elliptical orbit having the earth at a focus and of eccentricity 1/2. The shortest distance that the satellite gets to the earth is 400 km. Find the longest distance that the satellite gets from the earth.

$$PART - IV (7 \times 5 = 35)$$

Note: Answer all Questions

41. (a) If
$$\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}$$
, $\overrightarrow{b} = 3\overrightarrow{i} + 5\overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{c} = -\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}$ verify that $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = (\overrightarrow{a} - \overrightarrow{c})\overrightarrow{b} - (\overrightarrow{b} \cdot \overrightarrow{c})\overrightarrow{a}$

(or)

- (b) A semi-elliptical arch way over a one way road has height of 3m and width of 12m. The truck has a width of 3m and a height of 2.7 m. Will the truck clear the opening of the arch way.
- 42. (a) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$ show that x + y + z = xyz

- (b) Solve: $6x^4 35x^3 + 62x^2 35x + 6 = 0$
- 43. (a) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$ show that

 - (i) $xy \frac{1}{xy} = 2i \sin(\alpha + \beta)$ (ii) $x^m y^n + \frac{1}{x^m y^n} = 2 \cos(m \alpha + n \beta)$

- (b) Find the value of k which the equation kx 2y + z = 1, x 2ky + z = -2; x 2y + kz = 1 have
- (i) no solution (ii) unique solution (iii) infinitely many solution

44. (a) Solve:
$$\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$

- (b) Find the parametric vector non-parametric vector and cartesian form of the equations of the plane passing through the points (3, 6, -2). (-1, -2, 6) and (6, 4, -2)
- 45. (a) Solve by using Cramer's rule $\frac{1}{x} + \frac{2}{y} \frac{1}{z} = 1$; $\frac{2}{x} + \frac{4}{y} + \frac{1}{z} = 5$; $\frac{3}{x} \frac{2}{y} \frac{2}{z} = 0$
 - (b) Find the equation of the circle passing through the points (1, 1) (2, -1) and (3, 2).
- 46. (a) By using Gaussian elimination method balance the chemical reaction equation $C_2H_6 + O_2 \rightarrow H_2O + CO_2$

- (b) Show that the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{3}$ and $\frac{x-1}{3} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar. Also find the plane containing these lines.
- 47. (a) The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Determine the equation of the hyperbola if its eccentricity is 2.

(b) P represents the variable complex number z, find the locus of P if Re $\left(\frac{z+1}{z+i}\right) = 1$.